お客様のブラウジング体験を最適化するために、当社はCookieを使っています。あなたはこのサイトを閲覧するときのCookieの使用に同意します。
Cookieとあなたの個人情報の詳細については、当社のプライバシーポリシーをご覧下さい。
同意します
inner_banner_about
企業情報
最新ニュース
EDA Mac OS Linkedin Pic 3
2024-11-29
GOWIN Semiconductor Introduces Educational EDA Version V1.9.10.03 with macOS Support GOWIN Semiconductor Introduces Educational EDA Version V1.9.10.03 with macOS Support San Jose, California, and Guangzhou, China — November 29, 2024     GOWIN Semiconductor Corporation, the world's fastest-growing FPGA company, is thrilled to announce the release of GOWIN Educational EDA Version V1.9.10.03, a significant update to its license-free software platform. Designed for students, educators, and hobbyists, the educational version allows users to dive into FPGA programming without the need for a licensing process. In a groundbreaking first, this new version extends support to macOS, alongside Windows and Linux, making FPGA development accessible across all major operating systems. "A lot of university students and hobbyists are starting their college journey using a Mac, and I think we will see more CS students graduating and using macOS in the real world," said Jason Zhu, CEO of GOWIN Semiconductor. "We want GOWIN to be accessible for everyone, and we're excited to extend macOS support to our full EDA in the near future." GOWIN Educational EDA is tailored to remove barriers for entry-level users, offering reduced features in a lightweight, user-friendly environment. With macOS compatibility, GOWIN continues its mission to provide cutting-edge FPGA solutions that align with modern user needs. For more information and to download the educational EDA, visit www.gowinsemi.com. About GOWIN Semiconductor Corporation   Founded in 2014, Gowin Semiconductor Corp., headquartered with major R&D in China, has the vision to accelerate customer innovation worldwide with our programmable solutions. We focus on optimizing our products and removing barriers for customers using programmable logic devices. Our commitment to technology and quality enables customers to reduce the total cost of ownership from using FPGA on their production boards. Our offerings include a broad portfolio of programmable logic devices, design software, intellectual property (IP) cores, reference designs, and development kits. We strive to serve customers in the consumer, industrial, communication, medical, and automotive markets worldwide. Copyright 2024 GOWIN Semiconductor Corp. GOWIN, LittleBee®, GW1N/NR/NS/1NSR/1NZ®, Arora®, Arora V®, GW2A/AR®, GOWIN EDA and other designated brands included herein are trademarks of GOWIN Semiconductor Corp. in China and other countries. All other trademarks are the property of their respective owners. For more information, please email info@gowinsemi.com   Media Contact: Andrew Dudaronek andrew@gowinsemi.com
Picture1
2024-10-29
Growing demand for high-speed data in consumer devices gives rise to new generation of low-end FPGAs Growing demand for high-speed data in consumer devices gives rise to new generation of low-end FPGAs By Jason Zhu CEO, GOWIN Semiconductor   When a designer of telecoms equipment such as a server or switch specifies an FPGA for a high-speed data interfacing function, performance is the most important criterion for choosing the preferred device. If the rule of thumb in specifying an electronics component is that the designer can have one or two of high speed, low power consumption, small size and low cost, but not three or all four of these attributes, the telecoms equipment manufacturer will prioritize high speed above the other factors. This has given the manufacturers of high-end, high-density FPGAs a strong incentive to develop products which are packed with high-performance SerDes capabilities, and which support the high-speed communications protocols – PCIe, Ethernet, Infiniband and so on – on which communications service providers’ fiber networks are based.   These FPGAs might be large, they might be expensive, and they might be power-hungry – but this is of little importance to equipment manufacturers serving the telecoms market, as long as they are fast.   How different it is in the market for portable and wearable consumer devices, where the cost, power consumption and size of an FPGA are impossible to overlook. This has meant that the FPGA’s role in consumer devices has generally been limited to functions which basic FPGAs – small, low-power, low-density and low-cost products – can perform, such as: Glue logic integration Simple counter Basic state machine Control logic I/O and interface bridging I/O expansion Aggregation of multiple sensor inputs Voltage monitoring For anything more demanding, the FPGA market did not in the past provide products which could meet the consumer market’s speed/cost/size requirements. In fact, there was no demand for the FPGA’s high-speed data interfacing capabilities for as long as consumer devices were handling relatively small amounts of data to support undemanding input and output devices such as a basic camera or a small display. But the consumer world is changing: technology and consumer demand are driving data throughput off the scale. We are discovering that there is almost no limit to people’s appetite for vivid, ultra high-definition (UHD) video and AI-enhanced high-resolution imaging, even in space- and power-deprived wearable products such as AR/VR headsets and smart glasses (see Figure 1). For instance, a VR headset will typically be required to cram the type of UHD content more normally viewed on a large TV screen on to two synchronized displays. Not only must the output achieve 4K or even 8K resolution, it must also be rendered at a higher frame rate – typically 128 frames/s – than a standard TV achieves, to avoid the risk of motion blur.     Fig. 1: to create immersive experiences, a VR headset requires ultra high-definition display capability, and the internal data bandwidth to support it   This is leading device manufacturers to migrate from interfaces such as MIPI D-PHY or DisplayPort for video to higher-speed alternatives such as MIPI C-PHY. And this calls for the type of high-speed SerDes capability that the telecoms equipment designer uses an FPGA to provide. But we know that the high-speed FPGAs developed for the telecoms market are not suitable for consumer devices. This is why I foresee the emergence of a new category of FPGA at the low-density, low-cost end of the market that has previously been limited to basic logic functions. This new-generation FPGA will be optimized for high-speed SerDes functions: it will offer not only raw high-speed SerDes capability, but will also specifically support the protocols that the new consumer devices is using, such as MIPI C-PHY and PCIe, either as soft-coded IP or even hard-coded into the silicon (see Figure 2). This SerDes capability will be backed by more generous provision of high-speed memory than is usual in low-end FPGAs.     Fig. 2: examples of video bridging and processing use cases in the latest consumer devices   Optimized for data-interfacing and data-bridging functions, this new generation of FPGA will provide limited scope for implementing other logic functions, with few general-purpose logic elements available to the application, in order to minimize die size and cost. GOWIN Semiconductor’s view is that such an FPGA demands a strategic shift from the manufacturers of low-density FPGAs. To date, they have met the requirement for low cost by stretching out the life of legacy process nodes used to fabricate their products, using a 40nm process or older, for which the investment in equipment and mask sets is relatively small. GOWIN itself has a strong position in consumer devices with its LittleBee family of low-density FPGAs, which are themselves built on a legacy process. The LittleBee FPGAs perform a data aggregation function in many wearable and mobile devices. Without data aggregation, sensor data would be transferred to the main microcontroller or system-on-chip (SoC), and commands or configuration data transferred from the SoC to sensors, over low-speed interfaces such as I2C, UART or SPI working as sideband communication channels. This results in the proliferation of wires between the SoC and sensor sub-systems, which are often mounted on a separate board from the main controller board. By implementing data aggregation in an FPGA, data from multiple sensors can be combined into a single high-speed data stream, reducing the number of physical network connections between the host and the various sub-systems. An example of the implementation of data aggregation is the OCP DC-SCM project in servers. While legacy fabrication processes might be adequate for the aggregation of low-speed I2C, UART or SPI interfaces, however, they are not going to meet the requirement for advanced SerDes circuitry: the MIPI C-PHY specification, for instance, supports a data rate of up to 13.7Gbps [1], offering as much as three times the bandwidth of the earlier MIPI D-PHY standard. This is why GOWIN took the radical decision to move to an advanced node – a TSMC 22nm ultra low-power process – for its Arora V family of low-density FPGAs. This 22nm process has allowed GOWIN to include a high-speed transceiver on-chip in the Arora V FPGAs. It has also enabled much larger memory provision: in the shift from the 55nm node used for LittleBee FPGAs to 22nm, the size of the memory cell shrinks by 90%. The practical consequence of the decision to adopt 22nm fabrication can be seen in the specifications of the Arora V GW5AT-60 product. It features four transceivers supporting a data-rate range of 270Mbps up to 12.5Gbps. A hardcore MIPI D-PHY interface offers four data lanes, and a hardcore MIPI C-PHY has three data lanes. Softcore interfaces include PCIe 2.0 (with 1, 2 and 4 lanes), and LVDS at up to 1.25Gbps, as well as a DDR3 interface operating at up to 1,333Mbps. Memory provision includes 118 blocks of 2,124kb block SRAM, and 468kb of shadow SRAM. The FPGA also includes 60k LUT4 logic elements. The device’s core voltage is 0.9V/1.0V/1.2V.   This illustrates the way that, by fabricating at an advanced node, it becomes possible to create a low-density, low-power FPGA that provides for very high-speed data interfacing. And because of the small size of this FPGA, it can be offered at a unit cost which is affordable in wearable and portable consumer devices. In fact, the cost is attractive enough that OEMs can retain the FPGA in high-volume production, without having to contemplate replacing it with a custom ASIC, a step which is time consuming and risky, and which OEMs prefer to avoid. The commitment to an advanced silicon process in a product family which includes low-end FPGAs is now pointing the market in a new direction, one which combines the high-speed transceiver capabilities of traditional telecoms FPGAs with the low cost and low power consumption of traditional low-end FPGAs. There is a ready market for this new generation of FPGAs in consumer devices which use new high-speed transceiver capabilities to meet the needs, today, of ultra high-definition cameras and displays – and in future, potentially of additional high-speed peripherals supporting a new set of features and use cases driven by AI, AR and VR systems.   Reference: [1] MIPI C-PHY maximum data rate, from: https://www.mipi.org/specifications/c-phy
Video Bridge Article Pic
2024-10-15
How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications By Danny Fisher Director of International Marketing, GOWIN Semiconductor   FPGAs are at home in the world of multi-gigabit-per-second signal conversion and bridging.   In high-bandwidth telecoms, network and data center equipment, the FPGA is a mainstay of system designs, offering a valuable combination of high-speed SerDes capability, extensive logic resources, and programmability, giving designers the flexibility to modify features and functions without changing their board layout.   Indeed, FPGA manufacturers have a long track record of creating products which are well suited to the telecoms central office or the data center environment: very fast and large chips which provide hundreds of I/Os, huge bandwidth, and built-in standard interfaces. The fact that they are also expensive and power-hungry is a bearable trade-off for telecoms and network equipment manufacturers.   Increasingly, however, the need for multi-gigabit-per-second rates in signal bridging systems is extending from telecoms and network equipment into consumer and industrial devices. Here, too, the FPGA offers valuable benefits. But large, expensive, power-hungry ICs are a poor fit for sleek, battery-powered consumer devices in the ultra-competitive markets for products such as tablets, laptop computers, and augmented/virtual reality (AR/VR) headsets.   This new demand in consumer electronics is forcing FPGA manufacturers to rethink the architecture of their products in a bid to provide high-speed SerDes functionality at lower cost and low power.   Gamers lead the way The change which has precipitated a new wave of competition in the low-cost FPGA market has been led by demand from gamers: tablets and laptop computers have become the latest devices in which users want to play games in 4K resolution and – for smooth rendition of fast motion – at high frame rates of up to 160 frames/s.   The requirement for high-speed video signal transmission to support 4K displays stretches the capability of the interfaces that have previously been used in consumer devices to shuttle data from the central system-on-chip (SoC) to a display. Older MIPI D-PHY interface technology is giving way to the newer MIPI C-PHY standard for the most demanding 4K display applications in tablets and laptop computers. The doubling of the data rate in the migration from D-PHY to C-PHY technology poses a demanding challenge for low-end FPGAs.   Following the lead of the latest gaming tablets and computers, other use cases are now also starting to demand increased bandwidth in the link between an SoC and one or more displays, or between image sensors and an SoC. Examples include: Point-of-sale systems which split a single output from an SoC (typically in MIPI DSI format) to dual displays, one facing the consumer, one facing the sales counter. The FPGA typically converts the single DSI input to one DSI and one eDP output, with image processing to rescale the output and adjust the frame rate (see Figure 1) VR/AR headsets and goggles, splitting and converting a DisplayPort-over-USB Type-C® input from a host device such as a PC or smartphone to separate MIPI outputs to a left and right display in the headset Industrial machine vision systems, converting an image sensor’s MIPI D-PHY or C-PHY input to a high-speed USB 3.0 output to a host computer.     Fig. 1: using the GW5AT-15 FPGA, a single MIPI DSI video input from an external SoC can be converted to feed two displays requiring one MIPI output and one eDP output   Higher-speed SerDes at lower power and cost In all these use cases, an FPGA can provide the raw SerDes throughput for one or multiple display screens or image sensors, while enabling changes in the input or output specifications to be made just by changing the VHDL or Verilog programming of the device. The question the consumer and industrial markets are asking is, how far can power consumption, size and cost be reduced while providing the high SerDes bandwidth these applications require?   GOWIN has provided a new answer to the question by combining application-specific optimizations at both the silicon and circuit design level in a way that no low-density FPGA has ever before attempted. In silicon, scaling provides PPAC benefits (power, performance, area and cost) for low-end FPGAs as much as for other semiconductors. In the past, however, low-density FPGAs have tended not to take advantage of more advanced process nodes – FGPA manufacturers have preferred to extend the life of IP developed for legacy processes.   But high-speed video bridging places extreme demands on the FPGA. That is why for its Arora® V products, GOWIN shifted production from the 55nm process used in its Arora II products to TSMC’s ultra-low power 22nm process.   Use of this process has enabled GOWIN to gain performance, power and cost benefits in low-density Arora V products such as the GW5AT-15, available in a compact 4.9mm x 5.3mm WLCSP package. Despite its small size, this FPGA combines various hard-core SerDes transceivers offering maximum SerDes throughput of 12.5Gbps, together with 15,120 logic elements alongside high-speed memory resources including: 118kb of shadow SRAM 630kb of block SRAM (BSRAM) arranged as 35 x 18kb Optional 64Mb (in MG132P package) or 128Mb (in CM90P package) of pseudo SRAM (pSRAM) Optional 8Mb of NOR Flash By limiting the programmable logic provision to 15,120 logic elements, GOWIN can produce a smaller die at a lower unit cost, while providing sufficient digital capability to perform important image processing functions such as frame scaling and frame rate adaptation.   The application-specific circuit design optimizations in the Arora V family provide the higher SerDes throughput required for instance by the gamers viewing 4K content at 160 frames/s on a tablet. For instance, the GW5AT-15 features hardcore implementations of important SerDes interfaces: Three-lane MIPI C-PHY (5.7Gbps/lane) Four-lane MIPI D-PHY (2.5Gbps/lane) x4 PCIe 2.0 Alongside these circuit features, the GW5AT-15 includes various built-in softcore interfaces suitable for video bridging applications: a USB 2.0 PHY, USB 3.0 PHY, PCIe 3.0, and up to four lanes of 12.5Gbps/lane SerDes suitable for DisplayPort, eDP, SLVS-EC, LVDS and other types of video traffic.   These capabilities are what is required for the gaming tablet rendering 4K video at a high frame rate, converting a typical SoC’s MIPI output to a tablet display’s eDP input (see Figure 2).     Fig. 2: conversion of video data from MIPI to eDP format in a gaming tablet requires high SerDes throughput   The implementation of fast video bridging and image processing is as important when interfacing to a camera as when rendering video on a display. In industrial machine vision systems, for instance, a GOWIN GW5AT-15 or -60 can connect to a camera’s MIPI D-PHY or C-PHY interface and bridge the video to a host PC’s high-speed USB Type-C interface (see Figure 3). The FPGA’s softcore USB 3.0 PHY and USB 3.0 controller enables a single-chip implementation that can interface directly to the host controller without an external USB 3.0 PHY.   This solution has an extremely small footprint which can be integrated into the camera enclosure.   The GW5AT-60, which offers 59,950 logic elements, provides sufficient resources to support image preprocessing and machine vision-related algorithms. It also provides high-speed four-channel SerDes transceivers, hardcore MIPI C-PHY and D-PHY interfaces, and softcore LVDS interfaces to support a wide variety of sensors.     Fig. 3: in an industrial machine vision system, use of an Arora V FPGA enables the USB 3.0 interface to a host PC to be integrated into the camera enclosure   A new direction for the low-density FPGA The optimization of an FPGA product for video bridging and image processing applications points this segment of the low-density FPGA market in a new direction: in pursuit of greater size, power and cost reduction, FPGA products are evolving to include more application-specific SerDes functionality hard-wired into small devices.   And where previously FPGAs achieved low cost by maintaining older, legacy silicon fabrication processes, a new generation of low-density FPGAs are using advanced processes to provide the valuable advantages of low power and small footprint while reducing cost by limiting the provision of logic elements that are not required in the target applications. This brings the FPGA to center stage in the consumer device market, enabling a new generation of devices to benefit from improved display and camera performance without sacrificing battery power or competitive cost.
Picture1
2024-08-06
Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs Why Transceiver-Rich FPGAs Are Suitable for Vehicle Infotainment System Designs   By Danny Fisher, director of International Marketing, GOWIN Semiconductor   With the global transition in the automotive industry from the internal combustion engine (ICE) to electric drivetrains well under way, the basis of competition in this market is undergoing a paradigm shift. In the old automotive world, the drivetrain was the primary factor that distinguished one segment from another: Consumers understood the differences in cost and appeal between, for instance, a compact car with a 1-liter petrol engine, a family sedan with a two-liter diesel engine and a high-performance model with a four-liter turbocharged petrol engine.   By contrast, there is no such hierarchy of electric drivetrains. Instead, the focus of competition in the electric vehicle (EV) market is more on other factors than on the drivetrain: styling, driving range, and, crucially, the in-cabin experience.   It turns out that, given the choice, car buyers want the information, entertainment, user interface, audio and display features of the car to mirror those of the devices that they use outside the car, and especially the smartphone.     This move to a design philosophy, in which the car is treated as a smartphone on wheels, is powerfully symbolized by the launch in 2024 by Xiaomi, a globally renowned manufacturer of smartphones and consumer devices, of its first car, the SU7. In a smartphone, however, rendering of video content and the user interface is limited to the area available in a single, small display screen; in a car, there is scope to show information and entertainment content on multiple display screens in various sizes, formats and resolutions.   This makes display provision and performance one of the most important new battlegrounds over which car manufacturers will be fighting. And this is fueling demand for a new generation of video bridging and processing components that will enable the shift to a more consumer device-like interior in the car.   The implications of new smartphone-based system architectures in the car In the new EV market, the functions that the car is asked to perform (beyond the basic act of mobility) are increasingly similar to those of a smartphone, including: Communication with people and things Provision of audio and video entertainment Navigation Internet search and other forms of information provision Work-related functions, including the use of productivity apps such as spreadsheets and documents Car manufacturers are finding that the most effective designs for supporting this range of smartphone-like functions are based on smartphone-like hardware: automotive infotainment systems increasingly use applications processor platforms borrowed from the smartphone world, such as Qualcomm Snapdragon products or MediaTek 86xx family SoCs. These SoCs readily support the implementation of smartphone emulation products such as the Apple AirPlay or Android Auto software companions.   But the architecture of these Qualcomm, MediaTek and similar smartphone SoCs does not map perfectly on to the hardware configuration of the new type of car cabin design. The SoCs’ display output is optimized for a single, small display screen: This output is generally an HD signal carried over a MIPI DSI or an embedded DisplayPort (eDP) interface.   With strong competition in the EV market driving waves of innovation in cabin design, manufacturers are packing more and bigger displays into the interior, including: A large center console display, sometimes running across the entire width of the dashboard A digitally rendered virtual instrument cluster A holographic heads-up display in front of the driver 4K displays in the rear of the headrests on each of the front seats A large 4K roof-mounted central display for passengers in the rear seats These displays feature a variety of specifications for resolution and refresh rate and are of various sizes and aspect ratios. A smartphone SoC with just a DSI and an eDP interface cannot meet the requirements of the four or more different displays in the cabin of the latest EV designs. This calls for new solutions to bridge the SoC’s output to multiple displays’ inputs. The engineering challenge is complicated even further by consumers’ desire to use inside the car content and apps that are on their other devices. This is reflected in the move to upgrade the USB ports provided in the front and rear of the car from the USB 2 specification to USB 3 grade, and in the latest USB Type-C connector format. In particular, this allows passengers in the rear seats to cast 4K content from a tablet, laptop computer or smartphone to a large roof-mounted rear center display via a DisplayPort-over-USB Type-C interface. It can also enable display extension for a laptop computer to enhance the cabin’s value as a workspace for a rear passenger. At the same time, the rear center display still needs to provide an interface to the car’s own infotainment SoC as the default content source when no USB Type-C device is connected (see Figure 1).   Fig. 1: the rear roof-mounted display can take inputs separately from a USB Type-C device or from the car’s infotainment SoC   This increase in the number, size and quality of displays inside the car’s cabin marks a profound shift in interior design philosophy, from the car as a mobility product to the car as an entertainment hub and workspace. This is a new philosophy forged in response to fast-moving shifts in consumer tastes and preferences. Car makers will continue to learn over time what appeals to car buyers, and to evolve their designs for the user interface in response to customers’ changing tastes. So car manufacturers need a way to meet the need to bridge from the limited display outputs of a smartphone SoC to the multiple display input requirements of the car, while also providing high-speed USB 3, LVDS and MIPI D-PHY or C-PHY signaling rates. At the same time, they need to maintain the ability to respond rapidly to changes in consumer demand, and to iterate designs repeatedly with the least possible hardware development effort.   An expanded role for FPGAs in new designs for the car’s UI As telecoms equipment and server manufacturers know, FPGAs can implement very high-speed interfaces operating at high signaling rates. In networking equipment, FPGAs are widely used to provide interfaces that conform to the latest specifications of standards such as PCIe or Ethernet. Because an FPGA is a programmable device, it offers the flexibility to modify designs rapidly in response to changing design specifications without requiring a change to the board design. This is a valuable benefit in today’s EV market, in which product development cycles are dramatically shorter than was the case when the integration and assembly of complex, difficult petrol- or diesel-fueled drivetrains set a slower pace for the entire new product development process. The approach to developing new EV models is becoming more like that for developing new smartphone products: fast, and with innovation in display, camera and video technologies to the fore. This calls for automotive-qualified FPGA products that can meet the requirement for a growing range of video bridging and image processing functions. Today, the Chinese EV industry is widely acknowledged to be setting the pace for the rest of the world in car UI design. Design innovations and technology solutions developed for EVs in China are expected to find their way into new car designs under development elsewhere in east Asia, as well as in Europe and the US. This means that FPGA manufacturers that have a strong position in the Chinese automotive market are exposed to the cutting edge in EV design, and so are often the first to respond with FPGA product developments that meet the need for new and improved display interfacing and image processing capabilities which bridge between a smartphone SoC and a car’s infotainment system.     Fig. 2: smartphone SoCs with limited output capability can use a specialist FPGA for bridging to multiple display screens   This explains why the market is seeing the introduction of a new generation of automotive-grade FPGA products which fit EVs’ emerging application requirements, including: Multi-screen display outputs with signal translation over long cable runs. A single infotainment SoC derived from a smartphone platform typically produces limited video outputs. In new display-rich car interiors, this output needs to be bridged to displays in both the front and rear of the cabin, while potentially converting the signal to MIPI or LVDS format (see Figure 2). Screen extension – outputs from a tablet or laptop computer’s USB Type-C interface need to be converted to a MIPI or LVDS format that a large automotive display can handle (see Figure 1). When no external video source is connected, the default SoC’s video source is automatically supplied to these screens. This calls for a combination of logic functions (for source selection), bridging (for instance from MIPI D-PHY to LVDS) and video processing (for instance for display image scaling). Video bridging, splitting and frame-rate conversion (see Figure 3).     Fig. 3: typical examples of the video processing applications required in new infotainment system designs based on smartphone SoC platforms   The availability of these new high-speed, programmable image processing devices will enable automotive manufacturers everywhere to respond more quickly and flexibly to the dynamics of the car market in which consumers who no longer obsess about horsepower are starting to demand an interior design with more entertainment, information and productivity features – and more and bigger displays.    
GOWIN_GW5AT-15K_Poster_Full
2024-06-24
GOWIN がハードコア MIPI C-PHY 機能を搭載した小型 FPGA を発表。高速 4K ビデオ・ディスプレイ・インターフェースに新たな低コスト・オプションを追加。   2024年6月25日、カリフォルニア州サンタクララ – 世界的にも急成長しているFPGA企業であるGOWINセミコンダクターは本日、最大120フレーム/秒 高フレーム・レートでの4Kビデオ転送など、要求の厳しいコンシューマ・エレクトロニクスやオートモーティブ市場のユース・ケース向けに、プログラム可能な高速ブリッジング・ソリューションを提供するGW5AT-15 FPGAを発表しました。   Arora-V FPGAファミリーの最新製品であるこの新しいGW5AT-15は、さまざまなハードコアSerDesトランシーバーと高速メモリ、および15,120個のロジック・エレメントを組み合わせています。この製品は、4.9mm x 5.3mm WLCSPを含むパッケージ・オプションで提供され、最大12.5GbpsのSerDesスループットを実現します。   Arora V製品とGOWIN EDA開発環境は、Sensors Converge Expo(米国カリフォルニア州サンタクララ、2024年6月25~26日)のGOWINブース708でご覧いただけます。   GW5AT-15の機能は、コンシューマ向けタブレット、AR/VRヘッドセット、車載インフォテインメント・システムなど、ビデオやその他のデータ転送アプリケーションに非常に高い帯域幅が必要で、小さなボード・フットプリントを必要とする新しいユース・ケースに最適です。   GW5AT-15はSerDes技術による高帯域幅を備えているため、高速インターフェースでの使用に最適です。この新しいFPGAの特徴は以下の通りです:   最大75Gbps/レーンで動作する3レーンMIPI C-PHY 4レーンPCIe 3.0 最大5Gbps/レーンで動作する4レーンMIPI D-PHY GW5AT-15は、オンチップのUSB 3.xおよびUSB 2.xPHYにより、高速USB Type-C® やその他のUSB接続にも対応しています。 GOWIN CEO、Jason Zhu氏は次のように述べています。「高速ディスプレイおよびカメラ・インターフェースの市場では、大型で高価で消費電力の大きいハイエンドFPGAか、SerDes性能が不十分なローエンドFPGAのいずれかを選択するしかありませんでした。当社の最新のArora Vデバイスは、このギャップを完璧に埋め、小型で非常に手頃な価格のFPGAでハードコアMIPI C-PHYおよびD-PHY機能を提供します。」 4Kゲーミング・タブレットを含む新たなユース・ケース GW5AT-15が提供する高いスループットは、最新のコンシューマ向けタブレット設計における高フレームレート4Kビデオに対するゲーマーの要件をサポートします。車載インフォテインメント・システムでは、GW5AT-15が提供する高速USBおよびその他のインターフェースにより、 Android Auto™やApple CarPlay®ソフトウェア・コンパニオンなどのアプリケーションを通じて、スマートフォンのユーザー体験を車内でよりよく再現できるようになります。 すべてのSerDes操作は、同じパッケージに実装された高速メモリ・リソースによってサポートされています。 118Kbの分散SRAM 35x18Kbとして配置される630KbのブロックSRAM(BSRAM) オプションの64Mb(MG132Pパッケージ)または128Mb(CM90Pパッケージ)の擬似SRAM (pSRAM) オプションの8MbのNOR Flash このFPGAは、2つのオンチップPLL、複数のクロック・ソース、JPEGコーデック、ADCも備えています。 Arora Vファミリーの他の製品と同様に、GW5AT-15は低電力22nm TSMCプロセスで製造されています。GOWIN EDA開発環境には、FPGA設計ツール、IPコア、リファレンス・デザインが含まれています。このFPGA設計ツールは、SystemVerilog、Verilog、およびVHDLプログラミング言語をサポートしています。GOWIN EDAの使用にはライセンス制限はなく、www.gowinsemi.comから無料でダウンロードできます。 GW5AT-15は現在、GOWINから直接、または正規販売代理店を通じてサンプル提供中です。   GOWINセミコンダクターについて 2014年に設立され、主要なR&Dを中国本社に置くGOWINセミコンダクターは、当社のプログラマブル・ソリューションで世界的に顧客のイノベーションを加速するビジョンを持っています。当社は、プログラマブル・ロジック・デバイスで製品の最適化と利便性を実現することに焦点を当てます。当社の技術と品質へのこだわりにより、顧客はFPGAを量産ボードに使用することでトータル・コストを削減できます。当社の製品には、プログラマブル・ロジック・デバイス、デザイン・ソフトウェア、IPコア、リファレンス・デザイン、および開発キットの幅広いポートフォリオが含まれています。当社はコンシューマ、インダストリアル、通信、医療、そしてオートモーティブ市場で世界中の顧客にサービスを提供することを目指しています。 GOWINの詳細については、www.gowinsemi.comをご覧ください。   ©2024 GOWIN Semiconductor Corp.GOWIN、LittleBee®、GW1N/NR/NS/1NSR/1NZ®、Arora®、Arora V®、GW2A /AR®、GOWIN EDA、およびその他のここに含まれる指定ブランドは、GOWINセミコンダクターの中国およびその他の国における商標です。その他すべての商標はそれぞれの所有者の財産です。詳細については、info@gowinsemi.comにメールしてください。   メディア連絡者: 佐伯昭二 shoji.saiki@gowinsemi.com   Rhianna Ogle、TKOマーケティング・コンサルタント rhianna@tko.co.uk Tel: +44 1444 473555
InfoComm Flyer 2024 Website (2100 × 696 px)
2024-05-09
GOWIN Semiconductor to attend InfoComm 2024   San Jose, United States, and Guangzhou, China 9th May 2024 - GOWIN Semiconductor Corporation, a global leader in FPGA technology and the fastest-growing provider in the industry, is thrilled to announce its debut participation at InfoComm 2024, taking place from June 12th to 14th in Las Vegas, United States. This milestone coincides with GOWIN's tenth anniversary, marking a significant moment in our journey. Join us at booth W1352, where we will unveil our latest FPGA innovations and demonstrate their transformative capabilities.   InfoComm stands as North America's premier audiovisual trade show, uniting manufacturers, integrators, dealers, and end-users worldwide to explore cutting-edge technologies, products, and services. At this esteemed event, we will present our groundbreaking FPGA offerings, notably highlighting the Arora V series. Renowned for their unparalleled SerDes performance and energy efficiency, these devices leverage TSMC’s 22nm LP process with proven automotive grade-1 capability, poised to redefine the mid-density FPGA market. Moreover, our new lineup offers exceptional power efficiency paired with competitive pricing, alongside compatibility with various competitor pin-compatible package options, facilitating seamless integration without PCB hardware redesign.   Our booth will feature live demonstrations showcasing the versatility and power of our FPGA solutions, including MIPI CSI camera to HDMI display bridging utilizing the Arora-V GW5A-25 family, a Universal Audio Class (UAC2) USB2.0 2x2 audio interface powered by the cost-effective LittleBee Flash-based GW1N-9 family, and a captivating beam forming demo.   In a special highlight, we are thrilled to announce that our esteemed CEO, Jason Zhu, will be joining our field sales team to engage in exclusive meetings with invited customers and partners. For those seeking visionary insights into the FPGA industry, this is an unparalleled opportunity to connect with a leader driving innovation.   Scott Casper, Senior Director of Sales, Americas, expressed his enthusiasm, stating, “We are incredibly excited to make our inaugural appearance at InfoComm, presenting our expanding portfolio of products, IP, and pioneering solutions. This event underscores our commitment to leadership in the evolving low and mid-density FPGA landscape.”   GOWIN Semiconductor eagerly anticipates welcoming all prospective customers and partners to booth W1352, where together, we'll explore the boundless possibilities of FPGA technology.   Supporting Resources:   For more information about GOWIN Semiconductor, please visit: https://www.gowinsemi.com/en/ For more information about and to register for the conference, visit https://www.infocommshow.org/   About GOWIN Semiconductor Corporation   Founded in 2014, Gowin Semiconductor Corp., headquartered with major R&D in China, has the vision to accelerate customer innovation worldwide with our programmable solutions. We focus on optimizing our products and removing barriers for customers using programmable logic devices. Our commitment to technology and quality enables customers to reduce the total cost of ownership from using FPGA on their production boards. Our offerings include a broad portfolio of programmable logic devices, design software, intellectual property (IP) cores, reference designs, and development kits. We strive to serve customers in the consumer, industrial, communication, medical, and automotive markets worldwide.   Copyright 2024 GOWIN Semiconductor Corp. GOWIN, LittleBee®, GW1N/NR/NS/1NSR/1NZ®, Arora®, Arora V®, GW2A/AR®, GOWIN EDA and other designated brands included herein are trademarks of GOWIN Semiconductor Corp. in China and other countries. All other trademarks are the property of their respective owners. For more information, please email info@gowinsemi.com   Media Contact: Andrew Dudaronek andrew@gowinsemi.com
ISO26262-EN(4)(1)
2024-04-30
GOWIN、FPGA設計環境のISO 26262認証取得で自動車市場への事業展開を加速 GOWINの中低密度FPGAの高い安全性と信頼性評価により、自動車OEM は、ビデオ ブリッジング、ディスプレイ駆動、画像信号処理などのアプリケーションを設計できるようになりました。     中国・広州 - 2024年4月30日- 世界的にも急成長しているFPGA企業であるGOWINセミコンダクターは、本日、GOWIN EDA(FPGA 設計環境)がTUV機関によってISO 26262およびIEC 61508機能安全規格に準拠していると認定されたことを発表しました。 GOWIN EDAの認証は、GOWIN Arora-V(中密度)、Arora-II(低/中密度)、またはLittleBee(低密度)FPGAを搭載したモジュール設計が、ISO 26262およびIEC 61508規格で規定されたシステムレベルの機能安全の要件を満たしていることを自動車OEMに強く保証するものです。 機能安全認証の取得により、GOWINのFPGAへの新たな関心が高まることが期待されています。GOWINは、AEC-Q100 Grade2の認定を受けたFPGAを提供し、AEC-Q100 Grade1の認定も申請中です。GOWINの製品群に適用される既存の品質および信頼性認証には、IATF16949、ISO 9001、ISO 14001およびISO/IEC 17025が含まれています。 同じ市場セグメントの他のFPGAよりも幅広い高速ビデオ、ディスプレイ、グラフィックス・インターフェースを含む優れた機能セットと、TSMCの22nm LPプロセスで製造されたデバイスの高い信頼性実績により、GOWINのFPGAはすでに自動車で次のような用途に使用されています。 インフォテインメント・システムにおけるビデオ・ブリッジングとローカル・ディスプレイの調光 先進運転支援システム(ADAS)におけるカメラ出力の画像信号処理 USBオーディオ・インターフェース インストルメント・クラスター上のディスプレイモニタリングと安全のバックアップ GOWINのCEO、Jason Zhu氏は次のように述べています。 「GOWINは、低密度および中密度セグメントにおけるFPGA設計の革新性により、自動車業界からの関心が高まっています。特筆すべきは、DDR3メモリや高速LVDS、PCIeインタフェースと並んで、ハードコアMIPIインタフェースをFPGAで提供していることです。好評を博している当社のGOWIN EDA開発環境が機能安全認証を取得したことで、弊社は欧州、北米、アジアの自動車市場にさらに進出できると確信しています。」 GOWIN EDA開発環境には、FPGA設計ツール、IPコア、リファレンス・デザインが含まれています。このFPGA設計ツールは、SystemVerilog、Verilog、およびVHDLプログラミング言語をサポートしています。GOWIN EDAの使用にはライセンス制限はなく、www.gowinsemi.comから無料でダウンロードできます。 GOWINの車載対応FPGA製品群とGOWIN EDA開発環境は、Embedded World (ドイツ、ニュルンベルク、2024年4月9~11日)のスタンド3A.340 でご覧いただけます。   GOWINセミコンダクターについて 2014年に設立され、主要なR&Dを中国本社に置くGOWINセミコンダクターは、当社のプログラマブル・ソリューションで世界的に顧客のイノベーションを加速するビジョンを持っています。当社は、プログラマブル・ロジック・デバイスで製品の最適化と利便性を実現することに焦点を当てます。当社の技術と品質へのこだわりにより、顧客はFPGAを量産ボードに使用することでトータル・コストを削減できます。当社の製品には、プログラマブル・ロジック・デバイス、デザイン・ソフトウェア、IPコア、リファレンス・デザイン、および開発キットの幅広いポートフォリオが含まれています。当社はコンシューマ、インダストリアル、通信、医療、そしてオートモーティブ市場で世界中の顧客にサービスを提供することを目指しています。 GOWINの詳細については、www.gowinsemi.comをご覧ください。   ©2024 GOWIN Semiconductor Corp.GOWIN、LittleBee®、GW1N/NR/NS/1NSR/1NZ®、Arora®、Arora V®、GW2A /AR®、GOWIN EDA、およびその他のここに含まれる指定ブランドは、GOWINセミコンダクターの中国およびその他の国における商標です。その他すべての商標はそれぞれの所有者の財産です。詳細については、info@gowinsemi.comにメールしてください。   メディア連絡者: 佐伯昭二 shoji.saiki@gowinsemi.com   Rhianna Ogle、TKOマーケティング・コンサルタント rhianna@tko.co.uk  
Embedded World Flyer 2024 Website (2100 × 696 px)
2024-03-13
GOWIN Semiconductor to attend Embedded World 2024   London, UK and Guangzhou, China 13th March 2024 - GOWIN Semiconductor Corporation, recognized as the world's fastest-growing FPGA provider, is set to participate in Embedded World 2024 from April 9th to 11th in Nuremberg, Germany. This will be our fourth consecutive appearance at the EW exhibition and coincides with GOWIN’s tenth anniversary year. Our home for this year’s event will be Hall 3A Stand 340 where we will be showcasing and demonstrating our latest FPGA technology.   Embedded World, hosted annually in Germany, stands as Europe's premier trade show for embedded solutions and technologies. Boasting over 1000 exhibitors, it ranks among the world's largest fairs dedicated to cutting-edge embedded technologies for IoT and related market segments.   Following significant automotive success in Asia, GOWIN will continue focusing on the European automotive market this year. We will showcase our latest FPGA offerings, including our new Arora V series devices, celebrated for their exceptional SerDes performance, and energy efficiency. Utilizing TSMC’s 22nm  LP process with proven automotive grade-1 capability, this new lineup is primed to make a significant impression on the mid density FPGA market. In addition to featuring industry-leading power efficiency with very competitive pricing,  this new device family is also available in a range of competitor pin-compatible package options, enabling customers to explore replacement options without redesigning their PCB hardware.   Stand demos this year will include MIPI CSI camera to HDMI display bridging using our new Arora-V GW5A-25 family, Universal Audio Class (UAC2) USB2.0 2x2 audio interface using our low-cost LittleBee Flash-based GW1N-9 family, a AE350 hardcore RISC-V demo using our latest Arora-V GW5AST-138 µSoC FPGA and Field Oriented Motor Control (FOC) using our mid-range Arora-2 family devices.   Finally, we are delighted to announce our field sales team will be accompanied by Jason Zhu, CEO of GOWIN, who will be conducting meetings with invited customers and partners. Please contact us if you are interested in scheduling time with a FPGA industry visionary.   “We are extremely excited to be once again participating at Embedded World in Nuremberg, Germany, showcasing our growing portfolio of products, IP, and innovative solutions.” said Mike Furnival, Vice President of International Sales. “Additionally, to have our CEO, Jason Zhu, joining us clearly illustrates the importance of our global sales efforts and resultant customer relationships. We believe that participation at this show will further cement our position as the true leader in the much changed low and mid density FPGA marketplace”.   GOWIN Semiconductor looks forward to welcoming all interested potential customers and partners to our booth in Hall 3A Stand 340.   Supporting Resources:   To schedule a meeting with GOWIN Semiconductor at Embedded World 2024, please fill out this Google Form here: https://docs.google.com/forms/d/e/1FAIpQLSfsROeh2n92rf3VWtl6-BBWNPMaem2aDyPBfHJSrHRnQ9FhDQ/viewform For more information about GOWIN Semiconductor, please visit: https://www.gowinsemi.com/en/ For more information about and to register for the conference, visit https://www.embedded-world.de/en About GOWIN Semiconductor Corporation Founded in 2014, Gowin Semiconductor Corp., headquartered with major R&D in China, has the vision to accelerate customer innovation worldwide with our programmable solutions. We focus on optimizing our products and removing barriers for customers using programmable logic devices. Our commitment to technology and quality enables customers to reduce the total cost of ownership from using FPGA on their production boards. Our offerings include a broad portfolio of programmable logic devices, design software, intellectual property (IP) cores, reference designs, and development kits. We strive to serve customers in the consumer, industrial, communication, medical, and automotive markets worldwide.   Copyright 2024 GOWIN Semiconductor Corp. GOWIN, LittleBee®, GW1N/NR/NS/1NSR/1NZ®, Arora®, Arora V®, GW2A/AR®, GOWIN EDA and other designated brands included herein are trademarks of GOWIN Semiconductor Corp. in China and other countries. All other trademarks are the property of their respective owners. For more information, please email info@gowinsemi.com   Media Contact: Andrew Dudaronek andrew@gowinsemi.com
GOWIN Arora V Expansion website pic
2023-11-01
GOWINセミコンダクター、高度な機能を備えたArora V FPGAの拡張を発表   2023年11月01日、カリフォルニア州サンノゼと中国広州 - 世界的にも急成長している FPGA企業であるGOWINセミコンダクターは、Arora V高性能FPGAの拡張を発表しました。最新の製品は、最先端の22nm SRAMテクノロジーを採用し、12.5Gbpsの高速SerDesインターフェース、PCIeハードコア、MIPI D-PHYおよびC-PHYハードコア、RISC-Vマイクロプロセッサ、およびDDR3インターフェースをサポートしています。この拡張されたファミリーには現在、15K、45K、60K、および75K LUTデバイスが含まれています。   Arora Vファミリーは、以前のAroraファミリを補完するだけでなく、消費電力を低減しながらパフォーマンスを大幅に向上させています。具体的には、Arora Vデバイスは、AroraのGW2Aデバイスと比較して、パフォーマンスが30%向上し、消費電力が60%削減されています。Arora Vデバイスは、JTAG、SSPI、MSPI、CPUなどのさまざまなコンフィギュレーション モードをサポートします。また、JTAGまたはSSPIモードで外部SPI Flashを直接プログラムするか、ソフトコアIPを使用して他のモードで外部Flashを間接的にプログラムすることも可能です。さらに、バックグラウンド アップグレード、ビットストリーム ファイルの暗号化、セキュリティ ビットの設定などの機能を備えています。   Arora Vデバイスは、競合他社の製品と比較して、優れたシングル イベント アップセット (SEU) 耐久性を提供します。GOWINは、カスタムSRAMセルを設計することで革新的なアプローチを採用し、ソフト エラー レートを大幅に低減しました。SEU関連事項の処理をよりアクセスしやすくするために、GOWINは"SEU Handler" wrapper IPを提供します。これにより、ユーザーはSEUレポートと訂正機能にシームレスにアクセスでき、信頼性と効率の両方が向上します。   新しいArora Vデバイスには、各差動IOペアで利用可能なCDRテクノロジーによりクロック信号が埋め込まれたシリアル データを回復できる、高度なI/O構造が実装されています。この機能により、SerDesベースのソリューションを必要とせずに、複数の GPIOを簡単にカスケード接続して高いデータ スループットを実現できます。例えば、イーサネット、産業用フィールド バス、およびLVDSバスのアプリケーションなどのソリューションは、EasyCDRを使用して簡単に実装できます。   GOWINセミコンダクターのシニア セールス ディレクター(米州)であるScott Casperは、次のように述べています。「当社は、革新と成長の道のりにおける重要なマイルストーンである最新の22nmテクノロジー製品を提供できることを嬉しく思います。 パフォーマンスと速度の向上、およびEasyCDR機能の追加により、以前の製品ファミリーでは実現できなかったソリューションが実現できるようになります。       GOWINの詳細については、www.gowinsemi.comをご覧ください。   GOWINセミコンダクターについて 2014年に設立され、主要なR&Dを中国本社に置くGOWINセミコンダクターは、当社のプログラマブル ソリューションで世界的に顧客のイノベーションを加速するビジョンを持っています。当社は、プログラマブル ロジック デバイスで製品の最適化と利便性を実現することに焦点を当てます。当社の技術と品質へのこだわりにより、顧客はFPGAを量産ボードに使用することでトータル コストを削減できます。当社の製品には、プログラマブル ロジック デバイス、デザイン ソフトウェア、IPコア、リファレンス デザイン、および開発キットの幅広いポートフォリオが含まれています。当社はコンシューマ、インダストリアル、通信、医療、そしてオートモーティブ市場で世界中の顧客にサービスを提供することを目指しています。   ©2023 GOWIN Semiconductor Corp.GOWIN、LittleBee®、GW1N/NR/NS/1NSR/1NZ®、Arora®、Arora V®、GW2A /AR®、GOWIN EDA、およびその他のここに含まれる指定ブランドは、GOWINセミコンダクターの中国およびその他の国における商標です。その他すべての商標はそれぞれの所有者の財産です。詳細については、info@gowinsemi.comにメールしてください。       メディア連絡者: Andrew Dudaronek andrew@gowinsemi.com
お問い合わせ サンプル