お客様のブラウジング体験を最適化するために、当社はCookieを使っています。あなたはこのサイトを閲覧するときのCookieの使用に同意します。
Cookieとあなたの個人情報の詳細については、当社のプライバシーポリシーをご覧下さい。
同意します
企業情報

2014年に設立され、主要なR&Dを中国本社に置くGowinセミコンダクターは、当社のプログラマブル・ソリューションで世界的に顧客のイノベーションを加速するビジョンを持っています。当社は、プログラマブル・ロジック・デバイスで製品の最適化と利便性を実現することに焦点を当てます。当社の技術と品質へのこだわりにより、顧客はFPGAを量産ボードに使用することでトータルコストを削減できます。当社の製品には、プログラマブル・ロジック・デバイス、デザインソフトウェア、IPコア、リファレンスデザイン、および開発キットの幅広いポートフォリオが含まれています。当社はコンシューマ、インダストリアル、通信、医療、そしてオートモーティブ市場で世界中の顧客にサービスを提供することを目指しています。

もっと見る
製品
littlebee_工作區域 1
ARORA V:SRAMベースのFPGA ファミリー
GOWINセミコンダクターArora V FPGA製品は、SRAMベースのFPGAデバイスとして、豊富なリソースおよび向上したパフォーマンスを提供します。新しいアーキテクチャを備えたこのArora V FPGAは、AIコンピューティング対応の高性能DSP、高速LVDSインターフェース、豊富なBSRAMリソース、独自の研究開発によるDDR3、複数プロトコル対応の12.5Gbps SERDES、およびさまざまなパッケージタイプを提供し、低消費電力、高性能、および互換設計などのアプリケーションに最適です。

さらに、GOWINセミコンダクターは、合成、配置配線、ビットストリームファイルの生成およびダウンロードなどのワンストップサービスをサポートする、自社で研究開発した市場志向の新世代FPGAハードウェア開発環境を提供します。
littlebee_工作區域 1
LITTLEBEE:FLASHベースのFPGA ファミリー
GOWINのLittleBee®製品ファミリーは、豊富なロジックリソース、複数のIO規格、組み込みRAM、DSP、PLL、組み込みセキュリティ、および追加のユーザーFlashを備えたFlashベースの不揮発性FPGAを提供します。インスタントオン、高IOカウント、高スループット、低レイテンシのプログラマブル コンピューティングが必要な低消費電力、低コスト、およびフットプリントの小さいアプリケーション向けに最適化されていますです。
その結果、LittleBee®ファミリーFPGAは、MIPI CSI-2、MIPI DSI、USB 2.0、イーサネット、HDMI、MIPI I3CなどのI/O集中型ソース同期インターフェースおよびブリッジング アプリケーションで業界をリードしています。
また、インスタントオン ブートと組み込みのセキュリティ機能を提供するハードウェア管理アプリケーションにも最適です。
LittleBee® ファミリーには、拡張メモリ、強化されたARM Cortex-Mプロセッサ コア、セキュリティ、Bluetooth LEなど、従来のFPGA製品と比較して機能と使用法を拡張する複数の革新的なサブ機能付き製品ラインがあります。
もっと見る
マーケット
industry
インダストリアル
スマートで、コネクテッド、そしてグリーン!インダストリー4.0では、マシンはインテリジェントで、コネクテッドで、そして省エネである必要があります。当社の低消費電力、エンべデッドDDR / SDRAMおよび高性能DSPなどの特徴を備えたGOWIN FPGAは...
auto
オートモーティブ
インテリジェント、コネクテッド、そしてセーフ!スマートで安全な運転は今日のオートモーティブ市場の動向であり、高度運転支援システム(ADAS)はより多くの車内で接続されるセンサーを必要とします。Gowin FPGAは、スモールフォームファクタで豊富なIO数を提供します。
consumer
コンシューマ
Accelerate your Innovation!製品の差別化と製品化までの時間は、今日の競争の非常に激しいコンシューマ市場における重要な成功要因です。当社の既製IPソリューションを備えたGOWINの低コスト、高性能FPGAは、これらの要件に対する答えです。当社の...
WHITE PAPERS
EOL edited pic 1
EOL REPLACEMENT GUIDE
           
製品ライフサイクル管理
通常、製品のライフサイクルは、導入期、成長期、成熟期、衰退期の4つの主要な段階に分けられます。   GOWINセミコンダクターは、初回の製品リリースから最低15年以上のライフサイクルをサポートすることを明確な意図として製品設計を行い、それを支えるサプライチェーンを構築します。GOWINセミコンダクターの部品は、長い運用寿命を必要とする多くのアプリケーションで広く使用されており、そのためGOWINセミコンダクターは製品のライフサイクルに対して強いコミットメントをしています。このコミットメントにより、最小ライフサイクルが15年であっても、顧客は多くの製品ファミリーがそれよりもずっと長くサポートされることを実感するでしょう。GOWINセミコンダクターの製品の寿命は、他の主要なFPGAサプライヤーと比較しても長いか、それ以上です。   最終オーダー(Last Time Buy)の場合、GOWIN セミコンダクターはJEDEC規格に準拠しています。
AI Edge (20201005)
AIとエッジ コンピューティング
人間の知能のシミュレーションは、機械、特にコンピュータ システムによって処理されます。AIのアプリケーションとして、エキスパート システム、自然言語処理(NLP)、音声認識、およびマシン ビジョンなどが挙げられます。
commun
通信
未来に接続。Gbpsイーサネットから5Gまで、GOWINは通信機器メーカーの製品化までの時間の要求を満たし、総所有コストを削減するために、低消費電力、高速インタフェース、および省スペースのFPGAの全製品ポートフォリオを提供します。
medical
医療
ビジュアル、ポータブル、そして信頼できる!医療機器や医療システムでは、MEMSやセンサー技術の発展とともに、半導体の含有量が増え続けています。画像センサのより高い解像度は...
LEDディスプレイ
cloud
クラウドコンピューティングとデータセンター
高性能とプログラマビリティ!新興のクラウドコンピューティング技術は、データセンター内のコンピューティングおよびストレージデバイスの高性能およびプログラマビリティを継続的に推進しています。それに対して...
もっと見る
ニュース
Embedded World Conference Flyer Press Release (2100 × 696 px)
2025-03-06
GOWIN Semiconductor to reveal FPGA-based motor control and video bridging design concepts at Embedded World 2025
  Nuremberg, Germany - 6 March 2025 – Embedded OEMs in the industrial and consumer market segments can discover innovative solutions for motor control and video bridging as GOWIN Semiconductor unveils ground-breaking FPGA-based demonstration designs at the Embedded World exhibition (Nuremberg, Germany, 11-13 March 2025). The demonstration designs, as well as the company’s broad portfolio of low-density LittleBee and mid-range Arora V FPGA products, will be available to view at the GOWIN booth 3A-340 at Embedded World. The GW5AS Motor Control Demo illustrates GOWIN’s advanced current-loop control IP implementing a field-oriented control (FOC) scheme for a permanent magnet synchronous motor. Based on the GW5AS-25K FPGA solution, which combines a high-performance Arm® Cortex®-M4 processor operating at up to 288MHz with a 25K LUT Arora-V FPGA, this demonstration design provides precise torque and speed control for industrial motors. Intended for use in CNC machines, robots, and other industrial applications, the GW5AS system offers multi-motor control and ultra-fast current-loop calculations, resulting in very high performance and real-time control. The GW5AT Video Bridging Demo highlights the benefits of the high-speed, hard-wired SerDes blocks integrated in GOWIN’s latest GW5AT FPGAs. Featuring the GW5AT-60K FPGA, the demo showcases a robust and high-speed video bridging system capable of supporting 4K video streaming. ‘Returning to Embedded World after a highly successful 2024, we are excited to demonstrate how GOWIN’s FPGA technology is evolving to meet the diverse needs of both industrial and consumer markets,’ said Mike Furnival, VP of International Sales at GOWIN Semiconductor. ‘Our innovative solutions not only provide exceptional performance and cost efficiency, but also empower engineers to create smarter, more integrated designs across a range of applications.’ For more information about GOWIN Semiconductor and its portfolio of high-performance FPGA solutions, visit www.gowinsemi.com.   About GOWIN Semiconductor Corporation Founded in 2014, Gowin Semiconductor Corp., headquartered with major R&D in China, has the vision to accelerate customer innovation worldwide with our programmable solutions. We focus on optimizing our products and removing barriers for customers using programmable logic devices. Our commitment to technology and quality enables customers to reduce the total cost of ownership from using FPGAs on their production boards. Our offerings include a broad portfolio of programmable logic devices, design software, intellectual property (IP) cores, reference designs, and development kits. We strive to serve customers in the consumer, industrial, communication, medical, and automotive markets worldwide. For more information about GOWIN Semiconductor, please visit: https://www.gowinsemi.com/en/   Copyright 2024 GOWIN Semiconductor Corp. GOWIN, LittleBee®, GW1N/NR/NS/1NSR/1NZ®, Arora®, Arora V®, GW2A/AR®, GOWIN EDA and other designated brands included herein are trademarks of GOWIN Semiconductor Corp. in China and other countries. All other trademarks are the property of their respective owners. For more information, please email info@gowinsemi.com.   Media Contacts: Andrew Dudaronek, GOWIN Semiconductor andrew@gowinsemi.com   Rhianna Ogle, TKO Marketing Consultants rhianna@tko.co.uk, tel: +44 1444 473555
もっと見る
EDA Mac OS Linkedin Pic 3
2024-11-29
GOWIN Semiconductor Introduces Educational EDA Version V1.9.10.03 with macOS Support
GOWIN Semiconductor Introduces Educational EDA Version V1.9.10.03 with macOS Support San Jose, California, and Guangzhou, China — November 29, 2024     GOWIN Semiconductor Corporation, the world's fastest-growing FPGA company, is thrilled to announce the release of GOWIN Educational EDA Version V1.9.10.03, a significant update to its license-free software platform. Designed for students, educators, and hobbyists, the educational version allows users to dive into FPGA programming without the need for a licensing process. In a groundbreaking first, this new version extends support to macOS, alongside Windows and Linux, making FPGA development accessible across all major operating systems. "A lot of university students and hobbyists are starting their college journey using a Mac, and I think we will see more CS students graduating and using macOS in the real world," said Jason Zhu, CEO of GOWIN Semiconductor. "We want GOWIN to be accessible for everyone, and we're excited to extend macOS support to our full EDA in the near future." GOWIN Educational EDA is tailored to remove barriers for entry-level users, offering reduced features in a lightweight, user-friendly environment. With macOS compatibility, GOWIN continues its mission to provide cutting-edge FPGA solutions that align with modern user needs. For more information and to download the educational EDA, visit www.gowinsemi.com. About GOWIN Semiconductor Corporation   Founded in 2014, Gowin Semiconductor Corp., headquartered with major R&D in China, has the vision to accelerate customer innovation worldwide with our programmable solutions. We focus on optimizing our products and removing barriers for customers using programmable logic devices. Our commitment to technology and quality enables customers to reduce the total cost of ownership from using FPGA on their production boards. Our offerings include a broad portfolio of programmable logic devices, design software, intellectual property (IP) cores, reference designs, and development kits. We strive to serve customers in the consumer, industrial, communication, medical, and automotive markets worldwide. Copyright 2024 GOWIN Semiconductor Corp. GOWIN, LittleBee®, GW1N/NR/NS/1NSR/1NZ®, Arora®, Arora V®, GW2A/AR®, GOWIN EDA and other designated brands included herein are trademarks of GOWIN Semiconductor Corp. in China and other countries. All other trademarks are the property of their respective owners. For more information, please email info@gowinsemi.com   Media Contact: Andrew Dudaronek andrew@gowinsemi.com
もっと見る
Picture1
2024-10-29
Growing demand for high-speed data in consumer devices gives rise to new generation of low-end FPGAs
Growing demand for high-speed data in consumer devices gives rise to new generation of low-end FPGAs By Jason Zhu CEO, GOWIN Semiconductor   When a designer of telecoms equipment such as a server or switch specifies an FPGA for a high-speed data interfacing function, performance is the most important criterion for choosing the preferred device. If the rule of thumb in specifying an electronics component is that the designer can have one or two of high speed, low power consumption, small size and low cost, but not three or all four of these attributes, the telecoms equipment manufacturer will prioritize high speed above the other factors. This has given the manufacturers of high-end, high-density FPGAs a strong incentive to develop products which are packed with high-performance SerDes capabilities, and which support the high-speed communications protocols – PCIe, Ethernet, Infiniband and so on – on which communications service providers’ fiber networks are based.   These FPGAs might be large, they might be expensive, and they might be power-hungry – but this is of little importance to equipment manufacturers serving the telecoms market, as long as they are fast.   How different it is in the market for portable and wearable consumer devices, where the cost, power consumption and size of an FPGA are impossible to overlook. This has meant that the FPGA’s role in consumer devices has generally been limited to functions which basic FPGAs – small, low-power, low-density and low-cost products – can perform, such as: Glue logic integration Simple counter Basic state machine Control logic I/O and interface bridging I/O expansion Aggregation of multiple sensor inputs Voltage monitoring For anything more demanding, the FPGA market did not in the past provide products which could meet the consumer market’s speed/cost/size requirements. In fact, there was no demand for the FPGA’s high-speed data interfacing capabilities for as long as consumer devices were handling relatively small amounts of data to support undemanding input and output devices such as a basic camera or a small display. But the consumer world is changing: technology and consumer demand are driving data throughput off the scale. We are discovering that there is almost no limit to people’s appetite for vivid, ultra high-definition (UHD) video and AI-enhanced high-resolution imaging, even in space- and power-deprived wearable products such as AR/VR headsets and smart glasses (see Figure 1). For instance, a VR headset will typically be required to cram the type of UHD content more normally viewed on a large TV screen on to two synchronized displays. Not only must the output achieve 4K or even 8K resolution, it must also be rendered at a higher frame rate – typically 128 frames/s – than a standard TV achieves, to avoid the risk of motion blur.     Fig. 1: to create immersive experiences, a VR headset requires ultra high-definition display capability, and the internal data bandwidth to support it   This is leading device manufacturers to migrate from interfaces such as MIPI D-PHY or DisplayPort for video to higher-speed alternatives such as MIPI C-PHY. And this calls for the type of high-speed SerDes capability that the telecoms equipment designer uses an FPGA to provide. But we know that the high-speed FPGAs developed for the telecoms market are not suitable for consumer devices. This is why I foresee the emergence of a new category of FPGA at the low-density, low-cost end of the market that has previously been limited to basic logic functions. This new-generation FPGA will be optimized for high-speed SerDes functions: it will offer not only raw high-speed SerDes capability, but will also specifically support the protocols that the new consumer devices is using, such as MIPI C-PHY and PCIe, either as soft-coded IP or even hard-coded into the silicon (see Figure 2). This SerDes capability will be backed by more generous provision of high-speed memory than is usual in low-end FPGAs.     Fig. 2: examples of video bridging and processing use cases in the latest consumer devices   Optimized for data-interfacing and data-bridging functions, this new generation of FPGA will provide limited scope for implementing other logic functions, with few general-purpose logic elements available to the application, in order to minimize die size and cost. GOWIN Semiconductor’s view is that such an FPGA demands a strategic shift from the manufacturers of low-density FPGAs. To date, they have met the requirement for low cost by stretching out the life of legacy process nodes used to fabricate their products, using a 40nm process or older, for which the investment in equipment and mask sets is relatively small. GOWIN itself has a strong position in consumer devices with its LittleBee family of low-density FPGAs, which are themselves built on a legacy process. The LittleBee FPGAs perform a data aggregation function in many wearable and mobile devices. Without data aggregation, sensor data would be transferred to the main microcontroller or system-on-chip (SoC), and commands or configuration data transferred from the SoC to sensors, over low-speed interfaces such as I2C, UART or SPI working as sideband communication channels. This results in the proliferation of wires between the SoC and sensor sub-systems, which are often mounted on a separate board from the main controller board. By implementing data aggregation in an FPGA, data from multiple sensors can be combined into a single high-speed data stream, reducing the number of physical network connections between the host and the various sub-systems. An example of the implementation of data aggregation is the OCP DC-SCM project in servers. While legacy fabrication processes might be adequate for the aggregation of low-speed I2C, UART or SPI interfaces, however, they are not going to meet the requirement for advanced SerDes circuitry: the MIPI C-PHY specification, for instance, supports a data rate of up to 13.7Gbps [1], offering as much as three times the bandwidth of the earlier MIPI D-PHY standard. This is why GOWIN took the radical decision to move to an advanced node – a TSMC 22nm ultra low-power process – for its Arora V family of low-density FPGAs. This 22nm process has allowed GOWIN to include a high-speed transceiver on-chip in the Arora V FPGAs. It has also enabled much larger memory provision: in the shift from the 55nm node used for LittleBee FPGAs to 22nm, the size of the memory cell shrinks by 90%. The practical consequence of the decision to adopt 22nm fabrication can be seen in the specifications of the Arora V GW5AT-60 product. It features four transceivers supporting a data-rate range of 270Mbps up to 12.5Gbps. A hardcore MIPI D-PHY interface offers four data lanes, and a hardcore MIPI C-PHY has three data lanes. Softcore interfaces include PCIe 2.0 (with 1, 2 and 4 lanes), and LVDS at up to 1.25Gbps, as well as a DDR3 interface operating at up to 1,333Mbps. Memory provision includes 118 blocks of 2,124kb block SRAM, and 468kb of shadow SRAM. The FPGA also includes 60k LUT4 logic elements. The device’s core voltage is 0.9V/1.0V/1.2V.   This illustrates the way that, by fabricating at an advanced node, it becomes possible to create a low-density, low-power FPGA that provides for very high-speed data interfacing. And because of the small size of this FPGA, it can be offered at a unit cost which is affordable in wearable and portable consumer devices. In fact, the cost is attractive enough that OEMs can retain the FPGA in high-volume production, without having to contemplate replacing it with a custom ASIC, a step which is time consuming and risky, and which OEMs prefer to avoid. The commitment to an advanced silicon process in a product family which includes low-end FPGAs is now pointing the market in a new direction, one which combines the high-speed transceiver capabilities of traditional telecoms FPGAs with the low cost and low power consumption of traditional low-end FPGAs. There is a ready market for this new generation of FPGAs in consumer devices which use new high-speed transceiver capabilities to meet the needs, today, of ultra high-definition cameras and displays – and in future, potentially of additional high-speed peripherals supporting a new set of features and use cases driven by AI, AR and VR systems.   Reference: [1] MIPI C-PHY maximum data rate, from: https://www.mipi.org/specifications/c-phy
もっと見る
お問い合わせ サンプル